
Soil Electrical Conductivity and Topography Related to Yield for Three Contrasting
Soil–Crop Systems

N. R. Kitchen,* S. T. Drummond, E. D. Lund, K. A. Sudduth, and G. W. Buchleiter

ABSTRACT Along with yield mapping, producers have expressed
increased interest in characterizing soil and topographicMany producers who map yield want to know how soil and land-
variability (Wiebold et al., 1998). Numerous propertiesscape information can be used to help account for yield variability
influence the suitability of soil as a medium for cropand provide insight into improving production. This study was con-

ducted to investigate the relationship of profile apparent soil electrical root growth and yield. These include soil water-holding
conductivity (ECa) and topographic measures to grain yield for three capacity, water infiltration rate, texture, structure, bulk
contrasting soil–crop systems. Yield data were collected with combine density, organic matter, pH, fertility, soil depth, topogra-
yield-monitoring systems on three fields [Colorado (Ustic Haplar- phy features (i.e., slope, aspect, etc.), the presence of
gids), Kansas (Cumuic Haplustoll), and Missouri (Aeric Vertic Epia- restrictive soil layers, and the quantity and distributionqualfs)] during 1997–1999. Crops included four site-years of corn (Zea

of crop residues. These properties are complex and varymays L.), three site-years of soybean (Glycine max L.), and one site-
spatially (and with some, temporally) within fields. Noyear each of grain sorghum [Sorghum bicolor (L.) Moench] and winter
single measurement adequately describes the influencewheat (Triticum aestivum L.). Apparent soil electrical conductivity
of the soil environment on rooting and crop growth andwas obtained using a Veris model 3100 sensor cart system. Elevation,

obtained by either conventional surveying techniques or real-time yield. Georeferenced soil sampling for fertility status,
kinematic global positioning system, was used to determine slope, typically from the surface layer from 0 to 20 cm, is often
curvature, and aspect. Four analysis procedures were employed to used by producers in developing recommendation maps
investigate the relationship of these variables to yield: correlation, for variable-rate fertilizer application. Information ob-
forward stepwise regression, nonlinear neural networks (NNs), and tained from these samples [including fertility, organicboundary-line analysis. Correlation results, while often statistically

matter, cation exchange capacity (CEC), and texture]significant, were generally not very useful in explaining yield. Using
has also been used in some research to evaluate yieldeither regression or NN analysis, ECa alone explained yield variability
variation (Kravchenko and Bullock, 2000; Nolin et al.,(averaged over sites and years R2 � 0.21) better than topographic
2001; Ward and Cox, 2001), but usually little or novariables (averaged over sites and years R2 � 0.17). In six of the nine

site-years, the model R2 was better with ECa than with topography. significance has been found.
Combining ECa and topography measures together usually improved Inexpensive and accurate methods for measuring
model R2 values (averaged over sites and years R2 � 0.32). Boundary within-field soil variation would have the potential to
lines generally showed yield decreasing with increasing ECa for Kansas greatly improve site-specific crop management. Sensors
and Missouri fields. Results of this study can benefit farmers and are ideal for mapping soil properties because they canconsultants by helping them understand the degree to which sensor-

provide data without the need to collect and analyzebased soil and topography information can be related to yield variation
samples and can be linked to global positioning systemsfor planning site-specific management.
(GPS) and computers for on-the-go spatial data collec-
tion. Sensors that measure soil properties could play an
important role in helping to characterize yield variation.Yield monitoring and mapping have given produc-

One sensor-based measurement that has showners a direct method for measuring spatial variability
promise is ECa, which is a measure of the ability toin crop yield (Lark and Stafford, 1996; Pierce and No-
conduct electrical current through the soil profile. Sev-wak, 1999). Yield maps have shown high-yielding areas
eral authors have reported on relating ECa to variationto be as much as 150% higher than low-yielding areas in crop production caused by soil differences (Jaynes et(Kitchen et al., 1999) and have revolutionized the way al., 1995; Kitchen et al., 1999; Luchiari et al., 2001; Zhangproducers view yield as they seek to learn how they and Taylor, 2001). Rapid spatial measurement of ECamight improve production. However, yield maps are can be accomplished using noncontact electromagneticconfounded by many potential causes of yield variability induction sensors (McNeil, 1992; Jaynes et al., 1993;

(Pierce et al., 1997) as well as potential error sources Sudduth et al., 2001) or with direct-contact sensors such
from combine yield sensors (Lamb et al., 1995; Black- as rolling coulters that measure electrical resistance di-
more and Marshall, 1996). When other georeferenced rectly (Lund et al., 1999; Sudduth et al., 1999). In gen-
information is available, producers naturally want to eral, ECa can be affected by a number of different soil
know if and how these various layers of data can be properties, including clay content, soil water content
analyzed to help explain yield variability and provide (Kachanoski et al., 1990; Morgan et al., 2001), varying
insight into improving production practices. depths of conductive soil layers, temperature, salinity,
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organic compounds, and metals (Geonics Limited, 1992, A pedagogy of NNs, while beyond the scope of this
document, can be found in Rumelhart and McClelland1997). Because many of these factors impact plant

growth, ECa measurements can be used on some soils (1986). Drummond et al. (1998) found several NN algo-
rithms that were able to relate crop yield to soil andas a surrogate measure of more costly soil chemical and

physical measurements (Jaynes, 1996; Clark et al., 2001; topographic properties with a high degree of accuracy
while minimizing the risk and effects of overfitting. Fur-Hartsock et al., 2001). For example, ECa has been found

to be highly correlated with claypan topsoil thickness ther work over multiple site-years of crop yields indi-
cated that neural methods could be effective function(i.e., depth to the Bt horizon) (Doolittle et al., 1994;

Sudduth et al., 2001). This soil property causes variation approximation tools, without loss of generalization abil-
ity, given appropriate training algorithms, network sizes,in infiltration and water storage characteristics for clay-

pan soils (Jamison et al., 1968) and thus is a property and learning parameters (Drummond, 1998; Drum-
that explains yield variation for average and below- mond et al., 2000).
average precipitation crop years (Kitchen et al., 1999). Another technique that has been used to develop

Field topography plays an important role in the hy- relationships of yield to soil properties is boundary-line
drological response of rainfall catchment and has a ma- analysis. It is a procedure that rests on the idea that
jor impact on water availability for crop production in there are limits in response to factors in any situation
rainfed agriculture (Timlin et al., 1998; Kravchenko and (Webb, 1972). Boundary-line analysis is unique because
Bullock, 2000). The introduction of real-time kinematic it isolates a subset of the total data set for analysis. It
(RTK) GPS receivers has made possible automated col- assumes there is a significant biological response be-
lection of highly accurate elevation data, thus providing tween a potential limiting factor of interest and a re-
an efficient way of obtaining high-resolution digital ele- sponse variable, to imply a cause-and-effect relationship
vation models (DEMs) of agricultural fields (Clark and (Webb, 1972; Lark, 1997). A review of applications of
Lee, 1998). The increasing availability of DEMs and this analysis has been reported previously (Kitchen et
advent of computerized terrain analysis tools have made al., 1999). In general, the analysis identifies a subset of
it possible to readily quantify the topographic attributes points lying on the upper edge of a large data set dis-
of a landscape (Bell et al., 1995; Weibel and Heller, played in a two-dimensional scatter plot for some factor
1991). of interest and yield. A line is fit to this subset of points

Numerous techniques have been applied for under- to develop a response function of that factor to yield.
standing the relationship between crop yields and mea- This upper boundary then represents, for the conditions
sured soil and site parameters. However, producers (and of that data set, the maximum possible response to that
researchers for that matter) are still uncertain which limiting factor, and points below the boundary line rep-
analyses to use, how to interpret results, or both. Cor- resent conditions where other factors have limited the
relation and other linear techniques have often been response variable (i.e., yield). The analysis works best
reported in the literature (Sudduth et al., 1996; Krav- when data sets are large, such as with spatially dense
chenko and Bullock, 2000). In most cases, linear analy- yield data obtained from combine yield monitoring.
ses alone have failed to produce good functional models We believe that sensor measurements of ECa and
explaining yield variability. More complex parametric topography from GPS can be used as indirect measures
regression techniques, both linear and nonlinear, can of soil property variation that will be associated with
be applied to the problem of relating crop yield to site the variation observed in yield maps. Objectives of this
and soil characteristics. The greatest difficulty in applying research were to (i) investigate how well ECa and topo-
these methods is that they require the dependent vari- graphic attributes related to grain yield for three con-
able be modeled as a function of the independent pre- trasting soil–crop systems, (ii) compare interpretations
dictor variables. It is possible to introduce nonlinearity from various statistical procedures when relating ECa
into the model, either explicitly or by pretreatment of and topographic data to yield data, and (iii) assess differ-
the variables, but the fact remains that the functional ences in interpretations between individual years of
form of the relationship between the dependent and yield data and yield data averaged over multiple years.
independent variables must be assumed.

Nonlinear, nonparametric methods are an attractive
MATERIALS AND METHODSalternative to parametric methods because they require

only a few general assumptions about the form of the Sites Description
regression surface. For example, Sudduth et al. (1996)

Three fields with contrasting soils and climate were selectedreported high accuracies when relating site and soil
for this study. Table 1 provides field location and size, soilproperties to crop yield using a nonlinear, nonparamet-
types, and cropping history information for 1997–1999. Theric method known as projection pursuit regression
study fields contrast in soil type, with fine sand to sandy loam(Friedman and Stuetzle, 1981). The feed-forward back-
in Colorado, silt loam in Kansas, and silt loam to silty clay inpropagation NN is another nonlinear, nonparametric Missouri. Precipitation and soil age increases moving from

method that has received considerable attention as a west (Colorado) to east (Missouri). Corn was grown continu-
general function approximation tool. Neural networks ously under center-pivot irrigation, and annual tillage was
consist of a number of highly interconnected, simple used to manage the large amounts of residues generated on
processing units, or neurons, whose weights can be ad- the Colorado field. The nonirrigated Kansas and Missouri
justed through an error back-propagation training algo- fields were planted no-till, and crops were rotated for optimal

soil water storage and to disrupt pest cycles.rithm to approximate the behavior of the input data.



KITCHEN ET AL.: SOIL ELECTRICAL CONDUCTIVITY FOR THREE CONTRASTING SOIL–CROP SYSTEMS 485

Table 1. Location, cropping, and apparent soil electrical conductivity (ECa)–sensing information for the study fields.

Colorado Kansas Missouri

Field location
County Morgan Saline Boone
UTM† zone NAD‡ 83, Zone 13N NAD 83, Zone 14N NAD 83, Zone 15N
Easting, m 582 600 634 200 573 600
Northing, m 4 465 000 4 294 900 4 343 100

Field size, ha 36 18 13
Predominant soils Bijou (Ustic Haplargids) Hord (Cumuic Haplustoll) Mexico (Aeric Vertic Epiaqualfs)

Valentine (Typic Ustipsamments) Longford (Udic Argiuistoll) Adco (Vertic Albaqualfs)
Average annual precipitation, mm 328 759 1026
Average May–Sept. temperature, �C 19.8 23.2 21.6
Cropping practices

1997 Disk, rip, mulch/tread plant 76-cm Minimum till, wheat, 19-cm rows No-till, planter, corn, 76-cm rows
rows, corn

1998 Disk, rip, mulch/tread plant 76-cm No-till, milo, 19-cm rows No-till, drill, soybean, 19-cm rows
rows, corn

1999 Disk, rip, mulch/tread plant 76-cm No-till, soybean, 19-cm rows No-till, drill, soybean, 19-cm rows
rows, corn

Date of ECa sensing March 1999 November 1997 October 1999
Soil conditions for ECa sensing After disking in spring, soil profile Post double-cropped soybean; Postharvest, soil profile generally dry

generally moist surface soil moist

† UTM, Universal Transverse Mercator.
‡ NAD, North American Datum.

depth. With ECa-dp, 90% of the response is obtained from theApparent Soil Electrical Conductivity, Topography,
soil above the 100-cm depth (Sudduth et al., 2003).and Yield Data Collection

The ECa data for the study fields were collected on transects
The ECa for each field was measured on a single date (dates approximately 20 m apart. Location and ECa data were re-

shown in Table 1) using the Veris model 3100 sensor cart corded on 1-s intervals, which corresponded to a measurement
system manufactured by Veris Technologies of Salina, KS about every 2 to 3 m along the transects. General soil moisture(Lund et al., 1999). This sensor identifies soil variability by

conditions at the time of ECa sensing are described in Table 1.directly sensing ECa. As the cart is pulled through the field,
The ECa was kriged following generally accepted proceduresa pair of coulter electrodes transmit an electrical current into
(Birrell et al., 1996) to a 10-m grid and mapped (Fig. 1).the soil while two other pairs of coulter electrodes measure

Elevation data for the Colorado site were collected usingthe voltage drop. The system georeferences the conductivity
conventional surveying techniques with a vertical accuracy ofmeasurements using an external differential GPS receiver and
6 cm. A real-time kinematic GPS survey was used to collectstores the resulting data digitally. The coulter electrodes of the
elevation data on approximately 20-m transects for the KansasVeris 3100 are configured as a Wenner array, an arrangement
and Missouri sites (vertical accuracy of 3–5 cm). The datacommonly used for geophysical resistivity surveys. The sensor
from each site were kriged, using appropriate semivariograms,response to ECa varies as a nonlinear function of depth. The
to create a DEM on a 10-m grid. Slope, profile curvature, andmeasurement electrodes are configured to provide both shal-
aspect were then calculated from this DEM using classicallow (ECa-sh) and deep (ECa-dp) readings of ECa. With ECa-sh,

90% of the response is obtained from the soil above the 30-cm terrain-modeling algorithms (Surfer v7, Golden Software,

Fig. 1. Apparent soil electrical conductivity maps of the study fields.
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Table 2. Number of candidate independent variables for stepwiseGolden, CO). For the terrain attribute of aspect, we were
regression of yield as function of apparent soil electrical con-most interested in whether north-facing slope affected yield
ductivity (ECa) and topographic properties. Regression analy-differently than south-facing slope (not east vs. west). There-
ses were performed for three different groupings of indepen-fore, aspect was modified to consider only its north-south dent variables.

facing effects, with 0� representing north facing and 180� repre-
Number of candidate variables†senting south facing.

Combines equipped with commercially available yield-sens- Group MLR MQR MQR�Int

ing systems were used to obtain data for 1997–1999 yield maps.
Soil ECa 2 4 5

Individual data points where yield data were unreliable were Topography 4 8 14
removed. Points may have been rejected due to any one or a ECa � topography 6 12 27
combination of the following factors: significant positional † MLR, stepwise multiple linear regression; MQR, stepwise multiple qua-
errors, abrupt changes in operating speed, significant ramping dratic regression; MQR�Int, MQR with two-way linear interactions.
of grain flow when entering and leaving the crop, a partial
swath width of crop entering the combine, and instantaneous stepwise regression analysis is provided in Table 2. Coeffi-yield values outside reasonable bounds. Precise threshold val- cients of determination (r2 or R2) for the regression models
ues for rejection depended on the field, crop type, and individ- are reported.
ual combine yield monitoring system used to collect each data The use of NNs for this study was intended to provide a
set. Our intent was to err on the side of caution, removing nonlinear, nonparametric statistical technique for comparison.
any questionable data from the point data set so that the As such, our goal was to provide a reasonable estimate of the
interpolation procedure would not be significantly skewed by prediction accuracy that could be achieved while guarding
a few outliers. Yield data were then processed using geostatis- against significant overfitting of the independent data and
tics, and appropriate semivariogram models and parameters without the implementation of an extremely time-consuming
were used to krige the data to the same 10-m grid as ECa cross-validation approach. For NN applications, there are sev-
and topographic data. All analyses were conducted on the eral parameters that must be considered, all of which may
grid data. have a significant impact on the network’s accuracy and gener-

The following procedure was used to calculate a 3-yr aver- alization abilities. These parameters include network size, to-
age yield for the fields. First, each site-year was normalized pology, training algorithm, training algorithm parameter selec-
by dividing the yield from each cell by the overall average tion, and amount of training time. A previous study by
yield from all of the cells within that site-year. This produced Drummond (1998) on a number of similar data sets provided
a distribution with a mean of 1 and a theoretical range of zero a good basis for selecting these parameters. A fully connected
to infinity though in practice, a field with a range larger than feed-forward network with an input layer of up to nine inputs,
0 to 3 would be unusual. The three normalized yield values a single hidden layer consisting of 10 neurons, and a single
for each location were then averaged. This method allowed for output neuron was selected. This provided enough flexibility
averaging not only across multiple site-years, but also across to achieve a good fit while limiting the possibility of overfitting.
multiple crop types. A training algorithm known as resilient back-propagation, or

rprop (Reidmiller and Braun, 1993), produced rapid learning
with good generalization results in all test cases. The algorithmData Analysis
was allowed to train for 5000 iterations because on similar

Four different types of analyses were performed to examine test sets, optimal generalization results had been achieved in
the relationship between yield and ECa or topographic proper- every test case by this point, with little indication of overfitting
ties. The first three analytical procedures (correlation, regres- between achieving the optimal solution and 5000 iterations.
sion, and NN) provide results where errors are minimized Yield, ECa and topography data sets for each field and pre-
over the whole population. The fourth procedure (boundary- dictor variable grouping were analyzed using the NNs de-
line analysis) is unique in that it identifies a subset of the data scribed above. The trained networks were used to estimate
for interpretation. crop yield and evaluate goodness of fit.

Pearson correlation coefficients (r) were calculated be- The relationship between yield and ECa on these data sets
tween ECa or topographic properties and between yield and was also explored using an upper boundary-line procedure,
ECa or topographic properties. Forward stepwise multiple- similar to that described by Kitchen et al. (1999). For this
regression models were used to assess the additive effects of specific boundary-line analysis, we examined the relationship
soil and topographic properties on yield. With this forward of yield to ECa-dp for each of the three fields and for all 3 yr
stepwise method, terms already in the model do not necessarily and also provided a few selected examples of boundary-line
stay. After a significant term was added, all of the variables analysis between elevation and yield. While we recognize that
in the model were retested with an F-test statistic to ensure ECa and elevation are not direct measures of yield-limiting
continued significance (P � 0.05). If a term was no longer factors, they are indirect measures of numerous soil properties
significant, it was removed from the model. From this iterative that have an impact on crop growth. For the analysis, ordered
stepwise procedure, terms in the final model were all F-test ECa or elevation values, from lowest to highest, were divided
significant, and all excluded terms were not significant. Re- into N/60 bins [where N � number of paired yield–ECa (or
gressions were conducted first considering only linear terms, yield–elevation) measurements for a site-year] and processed
then linear and quadratic terms, and finally linear, quadratic, so that each bin contained approximately 60 paired measure-
and two-way linear interaction terms. The regression analysis ments. In each bin, data above the 95th percentile of yield
considered three different combinations of ECa and topo- were selected to represent the upper edge and included in a
graphic data as candidate independent variables: (i) ECa data subset. Linear, quadratic, and cubic terms of ECa-dp or
(ECa-sh and ECa-dp), (ii) topography (elevation, slope, curvature, elevation (as well as the inverse functions of these two) were
and aspect), and (iii) ECa and topography combined. The evaluated using least-squares regression on the boundary data

subset. The lowest order/highest R2 model was selected.number of independent variables considered in each type of
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Table 3. Descriptive statistics for apparent soil electrical conductivity and topographic properties of the three study fields.

Statistic Field N ECa-sh† ECa-dp‡ Elevation Slope Curvature Aspect§

mS m�1 m degrees 10�2 m degrees
Mean Colorado 3272 12.8 22.4 1356.0 0.63 0.000006 81.3

Kansas 1784 12.9 33.2 349.8 0.95 0.000098 98.5
Missouri 1304 16.4 25.4 261.5 1.09 0.000022 78.9

Standard deviation Colorado 3272 4.6 9.2 0.52 0.43 0.000402 47.8
Kansas 1784 3.5 13.4 1.1 0.64 0.001190 45.2
Missouri 1304 7.2 10.3 2.2 0.65 0.000624 53.3

Minimum Colorado 3272 4.0 8.4 1354.0 0.03 �0.003250 0.1
Kansas 1784 7.8 15.9 347.9 0.02 �0.007050 0.0
Missouri 1304 2.8 3.8 257.5 0.04 �0.001950 0.1

Maximum Colorado 3272 38.2 57.1 1357.0 2.67 0.002660 180.0
Kansas 1784 30.3 65.8 352.5 3.68 0.006200 179.5
Missouri 1304 45.7 59.3 264.7 3.24 0.005550 179.9

† ECa-sh, shallow (30 cm) apparent soil electrical conductivity.
‡ ECa-dp, deep (100 cm) apparent soil electrical conductivity.
§ Degrees from true north.

RESULTS AND DISCUSSION should be viewed subjectively and mainly used as an
indicator of those factors to be included in more scruti-Within-field variation in ECa and topographic proper-
nizing analyses.ties for the three sites are compared in Table 3. Most

When considering ECa and topographic properties,properties can be compared across sites because sam-
the highest correlation coefficients were found betweenpling and analysis procedures were common. However,
the two ECa measurements (Table 4). Significant corre-ECa has been shown to have significant temporal vari-
lation coefficients were consistently detected betweenability, primarily as the result of changes in soil profile
ECa and the topographic attributes of slope and aspect.moisture amount and distribution (Sudduth et al., 2001).
Also, for Colorado and Missouri fields, both ECa mea-Therefore, comparing ECa across various sites, whether
surements were positively correlated with soil CEC (rthe sites are similar or dissimilar in soil type, may be
values between 0.55 and 0.88), and ECa-sh was positivelymisleading. A few contrasts of the other soil parameters
correlated with soil organic matter (r values � 0.80)are notable. Average slope for the three fields was
(CEC and soil organic matter data not shown). Correla-higher for Kansas and Missouri fields than for the Colo-
tions between topographic properties and CEC or soilrado field. Because the Colorado field is generally flat
organic matter were low (r values � 0.25) for the Colo-and very well drained, little surface runoff occurs on
rado field. For Missouri, slope and aspect were posi-this field. Runoff with erosion occurs occasionally on
tively correlated with CEC and organic matter (r valuesthe Kansas field and often on the Missouri field, the
between 0.36 and 0.56).result of greater slope, higher precipitation, and a finer-

Correlation coefficients between ECa or topographictextured soil.
properties and yield were generally much lower for the
Colorado field compared with the other two fieldsCorrelation Analysis (Table 5). Using coefficient of variation as a measure
of field yield stability within years, yield for the Colo-Single-factor correlation analysis tools are commonly

found in software used by producers and their consul-
Table 4. Pearson correlation coefficients between apparent soiltants to evaluate spatial data. Correlations between ECa

electrical conductivity and topographic properties.or topographic properties (Table 4) and between yield
ECa-sh† ECa-dp‡ Elevation Slope Curvatureand ECa or topographic properties (Table 5) are pro-

vided. With relatively large data sets (as in this case), Pearson coefficient, r
statistically significant correlations were common. More Colorado

ECa-dp 0.77*than 60% of the correlation coefficients in Table 4 and
Elevation �0.01 0.05*more than 80% of the correlation coefficients in Table 5 Slope �0.25* �0.28* 0.04

were significant (P � 0.01). However, a factor could be Curvature �0.02 0.05* 0.01 �0.01
Aspect§ �0.20* �0.13* �0.03 0.06* 0.04found to be significant even with a quite low correlation.

KansasFor example, 36% of the significant correlations for ECa-dp 0.75*
Elevation 0.27* 0.09*yield and ECa or topographic properties from the Colo-
Slope 0.45* 0.42* 0.34*rado field (the field with the largest number of data
Curvature 0.02 0.01 �0.22* �0.03

points) had weak and quite meaningless coefficient val- Aspect§ 0.09* 0.18* 0.08* �0.05 �0.03
Missouriues �0.10. Single-factor correlation analysis provides

ECa-dp 0.79*very little direct evidence for the cause(s) of yield varia- Elevation 0.03 0.37*
tion. Unless the data are transformed, correlations only Slope 0.30* 0.12* �0.48*

Curvature �0.06 �0.18* �0.30* 0.01assess the linear relationship between variables. Addi-
Aspect§ 0.41* 0.26* �0.13* 0.01 �0.05tionally, variation in yield data is the result of multiple

* Significant (test for |r| � 0) at P � 0.01 level.and interacting factors (Sudduth et al., 1996). For these
† ECa-sh, shallow (30 cm) apparent soil electrical conductivity.reasons, we advocate that if correlation analysis is used ‡ ECa-dp, deep (100 cm) apparent soil electrical conductivity.
§ Degrees from true north.to compare yield and soil property data, the results
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Table 5. Pearson correlation coefficients between grain yield and apparent soil electrical conductivity and topographic properties.

ECa-sh† ECa-dp‡ Elevation Slope Curvature Aspect§

Colorado Pearson coefficient, r
1997 0.20* 0.41* 0.17* �0.14* 0.10* �0.05*
1998 �0.10* 0.06* 0.20* �0.04* 0.04 �0.02
1999 0.14* 0.22* 0.08* �0.10* 0.07* �0.03
3-yr mean 0.09* 0.26* 0.18* �0.11* 0.08* �0.04

Kansas
1997 �0.19* �0.14* �0.33* �0.18* �0.03 0.00
1998 �0.25* �0.16* �0.35* �0.26* 0.00 0.07*
1999 �0.68* �0.72* �0.10* �0.44* 0.05 �0.26*
3-yr mean �0.61* �0.57* �0.36* �0.46* 0.02 �0.13*

Missouri
1997 �0.61* �0.68* �0.23* �0.06 0.14* �0.22*
1998 �0.10* �0.09* 0.26* �0.17* 0.02 0.00
1999 �0.22* �0.32* 0.08* �0.28* 0.04 0.04
3-yr mean �0.43* �0.50* �0.02 �0.21* 0.09* �0.08*

* Significant (test for |r| � 0) at P � 0.01 level.
† ECa-sh, shallow (30 cm) apparent soil electrical conductivity.
‡ ECa-dp, deep (100 cm) apparent soil electrical conductivity.
§ Degrees from true north.

rado field was more stable than for the Kansas and Kansas field, slope and elevation were also important
properties associated with yield variability (Table 5).Missouri fields (Table 6). We attributed this yield stabil-

ity in the Colorado field to the relatively fewer areas
with either excessive soil water (i.e., well-drained soils Multiple-Regression Analysis
resulting in minimal crop drowning) or water-deficient

The ECa and topographic properties were analyzedstress (due to irrigation). The effect of sprinkler irriga-
using stepwise multiple linear regression (MLR), step-tion on the Colorado field was that soil properties often
wise multiple quadratic regression (MQR), and MQRassociated with variations in soil water storage and dis-
including two-way linear interactions (MQR�Int) regres-tribution across the field (e.g., texture, slope, curvature)
sion. Parameters in the model were retested for signifi-had much less influence on crop production than did
cance after each regression step and were eliminated ifthe same properties under the nonirrigated production
not significant. While in the statistical sense, ECa and/of the other two fields.
or topography explained yield variability, we note thatApparent soil electrical conductivity consistently pro-
the relationship between them is an indirect one. Agro-vided the highest correlation coefficients with yield
nomically, properties like topography and ECa are notthough the value of the coefficient varied greatly from
affecting yield directly; they are only measures of howyear to year. For example, correlation with ECa-dp for
water availability is affected, and this is at the root ofthe Kansas field was �0.14 for 1997 and �0.72 for 1999.
yield variability. Coefficients of determination are givenIn a few cases, correlation coefficients were positive one
for each year and the 3-yr average for each field inyear and negative the next, such as seen with elevation
Table 7. In general, R2 values of MLR, MQR, andand yield for the Missouri field in 1997 and 1998. These
MQR�Int increased in this same order. This is expectedcontrasting effects neutralize each other when examin-
because the number of variables considered for inclu-ing the correlations for 3-yr averages (Table 5). Differ-
sion increased in the same order.ences in crop type and climate can produce very differ-

Several trends could be found when examining whichent correlations from year to year (Sudduth et al., 1996;
individual variables were included in the stepwise re-Kitchen et al., 1999; Kravchenko and Bullock, 2000).
gressions. Out of the regression models represented inWhile the correlation coefficients of yield and ECa were
Table 7, the frequency of inclusion in a model (eithernegative for Kansas and Missouri fields, they were
as a linear, quadratic, or an interaction variable) was asmostly positive for the Colorado field. Increasing ECa
follows: ECa-sh (68%), ECa-dp (70%), elevation (56%),is often associated with increasing clay (McNeil, 1992).
slope (63%), curvature (45%), and aspect (55%). AllBecause the soils on the Colorado field were generally
six measurements were included for each field but notwell drained, we attribute this trend to slightly improved
necessarily every year. Aspect entered into models lesswater-holding capacity with higher ECa. For the other
frequently for the Colorado field and curvature lesstwo fields, we speculate that higher ECa is associated
frequently for the Missouri field. Variables that werewith factors such as poor internal soil drainage and high-
correlated (Table 4) were still often both included inclay-content subsoil that restricts root growth. For the
the models, indicating a unique relationship of each

Table 6. Yield coefficient of variation (CV) for the three to yield.
study fields. As with the results for correlation, topography param-

eters provided little explanation of yield variability forYear Colorado Kansas Missouri
the Colorado field, due to sprinkler irrigation. For theCV
Kansas and Missouri fields, neither ECa nor topographic1997 0.10 0.22 0.31

1998 0.12 0.23 0.14 measures alone explained yield variability very well [all
1999 0.12 0.31 0.34 R2 � 0.23 in 2 out of the 3 yr (1997 and 1998 for Kansas
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Table 7. Coefficient of multiple determination for yield as a function of apparent soil electrical conductivity (ECa) and topographic
properties. Models included only significant terms (F-test P � 0.05) for stepwise multiple linear regression (MLR), stepwise multiple
quadratic regression (MQR), and MQR with two-way linear interactions (MQR�Int). A nonlinear neural network (NN) analysis was
also conducted. The ECa and topographic properties were analyzed by three separate groups: (i) ECa, (shallow and deep ECa), (ii)
topographic properties (elevation, slope, curvature, and aspect), and (iii) ECa and topographic properties combined.

Colorado Kansas Missouri

Year Group(s) MLR MQR MQR�Int NN MLR MQR MQR�Int NN MLR MQR MQR�Int NN

R2

1997 Soil ECa 0.20 0.26 0.26 0.31 0.03 0.04 0.04 0.05 0.48 0.51 0.53 0.48
Topography 0.04 0.05 0.07 0.17 0.13 0.17 0.19 0.25 0.17 0.27 0.30 0.54
ECa � topography 0.22 0.27 0.32 0.33 0.14 0.24 0.32 0.44 0.48 0.52 0.61 0.61

1998 Soil ECa 0.06 0.14 0.14 0.17 0.07 0.13 0.14 0.08 0.01 0.04 0.05 0.12
Topography 0.02 0.03 0.04 0.18 0.16 0.18 0.23 0.27 0.08 0.10 0.14 0.29
ECa � topography 0.08 0.16 0.20 0.25 0.17 0.19 0.31 0.28 0.13 0.16 0.26 0.35

1999 Soil ECa 0.05 0.07 0.07 0.12 0.57 0.59 0.59 0.63 0.10 0.13 0.22 0.20
Topography 0.02 0.03 0.03 0.07 0.28 0.29 0.34 0.52 0.08 0.10 0.12 0.18
ECa � topography 0.06 0.07 0.08 0.16 0.61 0.68 0.76 0.83 0.22 0.26 0.40 0.40

3-yr Soil ECa 0.10 0.17 0.17 0.23 0.40 0.43 0.43 0.46 0.25 0.27 0.35 0.40
Topography 0.03 0.05 0.06 0.17 0.28 0.29 0.30 0.45 0.07 0.10 0.14 0.39
ECa � topography 0.13 0.19 0.23 0.32 0.47 0.50 0.54 0.56 0.30 0.36 0.45 0.46

and 1998 and 1999 for Missouri)]. But in 1999 (soybean) crop years—1999 Kansas soybean and 1997 Missouri
corn. Yield variation will vary from year to year andfor Kansas and in 1997 (corn) for Missouri, between 50

and 60% of yield variability was explained using only crop to crop as affected by soil properties (Colvin et
al., 1997; Sudduth et al., 1997; Kravchenko and Bullock,the two ECa measurements. For both of these crop years,

summer precipitation was average or below average. 2000). While we conducted the 3-yr average regression
analysis, averaging yield maps may neutralize the infor-For Missouri in 1997, July precipitation was only 25%

of average (85 mm deficient from average), resulting in mation needed to better understand the interaction be-
tween soil or topographic properties and climate forcrop water stress during pollination. Under these dry

conditions, the soil’s ability to store water was the main crop production (Sawyer, 1994). With our study, averag-
ing site-years was the safest for the Colorado site be-influence on yield variability. Areas of these two fields

with highest ECa readings were defined as upland and cause the crop grown was unchanged and was under
irrigation over the three years.sideslope soils that have either a well-defined Bt horizon

(and therefore greater profile clay content) or a shal- We have heard producers say they would like to use
these ECa and topographic property measurements inlower Bt horizon. For claypan soils such as were found

at the Missouri field, ECa has been used to predict depth developing productivity management zones in their
to the restrictive claypan horizon (Doolittle et al., 1994; fields. These regression results indicate that all six mea-
Sudduth et al., 1995), a property that mediates potential surements, along with their interactions, were helpful
plant-available water capacity and limits crop yield for in accounting for yield variability, but the measurements
these soils in average to below-average precipitation that were most helpful varied year to year. In some
years (Thompson et al., 1991; USDA-NRCS, 1995). years, topography information best accounted for yield

Apparent soil electrical conductivity and topography variation; in other years, ECa was more important
variables were also considered collectively using step- (Table 7). As such, there is no clear indication that
wise regression analysis. These measures can be ob- any of these measurements we considered ought to be
tained rapidly by on-the-go sensors and can even be discounted when attempting to create productivity man-
collected simultaneously. In almost all cases, there was agement zones.
an improvement in accounting for yield variability when
allowing both ECa and topography terms into the model Neural Network Analysis
selection process over ECa or topography alone. The

Neural networks were generally quite capable of esti-greatest improvement in R2 values was seen when inter-
mating crop yield from ECa and topographic parame-actions (MQR�Int) were also considered (see Kansas
ters. Figure 2 shows one example for the 1999 Kansas1997 and 1999 and Missouri 1999 in Table 7). While
site. Note that in this case, the spatial crop variationthere can be significant and high correlation between
patterns are reliably replicated, with approximately 86%ECa and topographic properties (Table 4), the compari-
of the variation in actual crop yield explained by theson of R2 values from these regressions (that include
model. Other site-years showed somewhat lower accura-interactions and quadratic relationships) supports our
cies (Table 7); however, only three of the nine site-yearspoint again that each of these measures can uniquely
produced results poorer than 30% when all predictorcontribute to modeling yield variability.
variables were available to the model. Accuracies onRegressions for 3-yr average yields are also given in
the 3-yr normalized data sets were all above 30% whenTable 7. While an understanding of long-term relation-
all predictor variables were available. Comparing theships is desired, averaging across crops and years may
goodness of fit between techniques is informative. Theresult in interpretations that are crop or year specific.
NN outperformed MLR in all but one case and outper-For Kansas and Missouri, the 3-yr average regression

coefficients were greatly influenced by one out of three formed MQR in all but two cases. While more similar,
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Fig. 2. Actual (right) and neural network (left)–estimated yields for the Kansas 1999 site-year.

Fig. 3. Three-year yield response to shallow (ECa-sh) and deep (ECa-dp) apparent soil electrical conductivity modeled by neural network analysis
for (top left) Missouri, (top right) Kansas, and (bottom) Colorado fields.

Fig. 4. Yield response to deep apparent soil electrical conductivity (ECa-dp) and slope for the Kansas 1999 site-year based on (left) neural network
and (right) multiple quadratic regression including two-way linear interactions models.
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the NN outperformed MQR�Int in the vast majority of the NN did not increase coefficients of determination
by more than 0.10 over MQR�Int; thus, the relativelycases.

The fact that an empirical model can accurately fit less complex model might well have been selected for
the sake of parsimony. In general, the MQR�Int modelyield data to soil and topographic characteristics is of

interest, but more interesting is how it does so. Figure 3 provided surfaces very similar in nature to those pro-
duced by the NN. Figure 4 shows an example for theshows the results of NN modeling of the 3-yr normalized

yield data, using only the ECa group for each of the ECa plus topography variable set on the 1999 Kansas
site. The values for ECa-sh, elevation, aspect, and curva-three sites. The trained network was presented with a

fine grid of observations representing the range of val- ture were fixed to field average values, and a fine grid
over the range of ECa-dp and slope variables was pro-ues for ECa-sh and ECa-dp found within the field. The

resulting normalized yields (based on the range of yield duced. This pattern set was then presented to the appro-
priately trained NN and MQR�Int models, and resultingvalues found within the field) represent the response

surface for that two-input, one-output model. The actual response surfaces were mapped. While there were some
training observations for these networks are draped minor differences, the surfaces were very similar in over-
over the surface, both for visual comparison and to all shape, and both indicate that the most productive
show the region over which the model is defined. These soils in the field were the soils with the lowest ECa and
surfaces provided quite useful information. For exam- the least amount of slope. However, as ECa and clay
ple, for both the Missouri and Kansas sites, which were content increased (McNeil, 1992), the optimum yields
nonirrigated, there was a general trend of decreasing were found at slopes approaching 2� for both models.
yield with increasing ECa, both for ECa-sh and for ECa-dp. In short, low-ECa (high sand) soils were more productive
For the Missouri site, this relationship appeared to be with little or no slope while high-ECa (high clay) soils
quite linear in both dimensions, and on these claypan were more productive where soils had better surface
soils, the message was clear; soils with lower conductiv- drainage.
ity (and lower clay content) were more productive.
While this general trend held for the Kansas site as well, Boundary-Line Analysis
there are ripples on the surface within the area of the

An examination of scatter plots from large data setsdata points that indicate that the relationship is some-
can be very helpful in understanding the nature of asso-what more complex. The irrigated Colorado site, where
ciation between variables. Boundary-line analysis isthe ECa model provided the poorest fit, was also easy
merely a focus on the upper edge of the scatter-plotto interpret. Productivity was generally quite high and
data cloud. This upper boundary represents, for themore stable between years, as is indicated by the vast
conditions of that data set, the maximum possible re-majority of points being within 20% of maximum yield.
sponse to the factor used as the independent variable.Only in the areas where ECa was high in the surface
Points below the boundary line represent conditionslayer (ECa-sh), combined with low conductivity below
where other factors have limited the response of thethe surface layer (ECa-dp) (interpreted as fine-textured
dependent variable. Space limitations restrict us fromsoil over subsoil sand), was there a consistent, predict-
showing all possible scatter plots of yield in associationable reduction in yield. (Many of these points are not
with soil and topographic properties. We have limitedvisible in Fig. 3 because axis orientation was held con-
our presentation and analysis here to ECa-dp and yieldstant over locations.)
for each site-year (Fig. 5–7) and a few other examples ofIn general, the NN methods were able to provide the
boundary-line analysis using elevation and yield (Fig. 8).most accurate empirical models of the data. However,

there are many (approximately 75%) of the cases where For each figure, data used to define the boundary lines

Fig. 5. Scatter plot and boundary line of yield vs. deep apparent soil electrical conductivity (ECa-dp) for Colorado in 1997 to 1999. Points
represented with triangles are yield data above the 95th percentile for each 60-point increment (or bin) of ECa data.
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Fig. 6. Scatter plot and boundary line of yield vs. deep apparent soil electrical conductivity (ECa-dp) for Kansas in 1997 to 1999. Points represented
with triangles are yield data above the 95th percentile for each 60-point increment (or bin) of ECa data.

are represented as larger points in the scatter plots. The thin topsoil (Doolittle et al., 1994; Sudduth et al., 1995).
For the Kansas field, the higher ECa-dp areas were associ-regression models that best fit the upper boundary data

are described in Table 8. ated with sideslope and upland areas of the field. In a
previous study on claypan soils, Kitchen et al. (1999)For Colorado, scatter plots and boundary lines were

very similar in shape among years (Fig. 5). Lower R2 linked this type of boundary-line relationship with sea-
sons having significant plant stress due to deficientvalues, compared with the other two fields, were associ-

ated with relatively small changes in yield (i.e., stable plant-available water, particularly when the stress oc-
curred during the crucial periods of flowering and seedyield) over the observed range of ECa. This relationship

between yield stability and lower R2 values was also set. No soil water measurements were made for these
study fields, but those who managed the fields in Kansasobserved in a previous boundary-line analysis (Kitchen

et al., 1999). For all 3 yr, the greatest variation in yield and Missouri observed water stress during these seasons,
especially in the areas higher in ECa-dp. Yield tended towas exhibited at lower ECa-dp values. As represented by

the boundary line, corn yield for all 3 yr tended to be more stable (i.e., less variable) as ECa increased for
the Kansas and Missouri fields. In some situations, yielddiminish when ECa-dp was �15 mS m�1. Lower ECa-dp

areas on this field were high in sand content (data not was especially poor at low ECa (e.g., see Kansas 1997
and 1998). In these areas, the producer noted poor cropincluded here) and would be most quickly depleted of

soil moisture during peak crop water-use periods. stand, greater weed pressure, or both.
Three other examples of boundary-line analysis areThe regression models fit the upper boundary of ECa-dp

and yield data best for the Kansas and Missouri fields shown, relating elevation and yield (Fig. 8). In the plot
of Kansas 1999 soybean yield, the regression models(Table 8; Fig. 6 and 7). Boundary lines generally showed

that yield decreased with increasing ECa-dp. For the Mis- tested did not fit the boundary data well, so a running
average (window of five points) has been shown on thesouri field, the higher ECa-dp areas were associated with

Fig. 7. Scatter plot and boundary line of yield vs. deep apparent soil electrical conductivity (ECa-dp) for Missouri in 1997 to 1999. Points represented
with triangles are yield data above the 95th percentile for each 60-point increment (or bin) of ECa data.
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Fig. 8. Scatter plot and boundary line of yield vs. elevation for (left) Kansas 1999 soybean, (middle) Missouri 1997 corn, and (right) Missouri
1999 soybean. Points represented with triangles are yield data above the 95th percentile for each 60-point increment (or bin) of elevation data.

plot. For this plot, two distinctive clusters (or popula- yield potential. It is a diagnostic tool for delineating
possible soil problems and estimating the magnitude oftions) of data are present. A similar phenomenon, al-

though not quite as obvious, can be seen in the ECa-dp yield loss due to variation in the variable being exam-
ined. It also provides a picture of yield reduction duevs. yield scatter plot for the same crop year (Fig. 6).

Though both of these data clusters are at about the to the combined effects of other yield-limiting factors.
same elevation, the upper cloud represents soil in the
summit position of a landscape, and the lower cloud CONCLUSIONSrepresents a sideslope soil that is part of a different
landscape sequence. For the Missouri field in Fig. 8, While producers and their consultants seem anxious

to have streamlined and specific analytical procedurescorn and soybean yield potential, as represented by the
boundary line, was consistently better in the lower ele- for relating mapped yield to soil and topographic vari-

ables, no single analytical technique is a panacea. Corre-vation (toeslope) and upper elevation (summit) areas
of the field where plant-available water is presumed to lation analysis is most often used on these types of data

sets. Yet, data showing a low but significant correlationbe much better. Yield was least on the midelevation
sideslope areas of the field where topsoil was shallow can be rather intriguing and enlightening with another

analysis [e.g., compare correlation results (Table 5) withand plant-available water reduced.
The dispersed nature of the data in all of the scatter boundary-line analysis results (Fig. 8) for Kansas 1999

soybean yield and elevation]. As indicated earlier, weplots (Fig. 5–8) is representative of the multiple yield-
controlling factors that will inevitably be observed when caution against only using correlation analysis.

Visually examining the data in scatter plots (with orexamining crop production data collected over large
areas. The numerous effects of soil, weather, manage- without a boundary line) demonstrates that multiple

factors can affect yield, that the relationship betweenment, and localized insect, weed, disease, and wildlife
pressure on crop yield are all expressed in growing crop yield and soil properties can be nonlinear in nature,

and that potential interactions between variables exist.plants. The variability induced by these factors is much
more than what ECa or elevation alone can represent. Multiple groups of data, such as shown in Fig. 6 and

8 for Kansas 1999 soybean yield, were indicative ofThe primary value of boundary-line analysis lies in its
ability to delineate maximum yield relative to some interacting variables. Only with more rigorous investiga-

tion were we able to isolate plausible causes (such asother quantified property of interest. This, along with
adequate yield records, may serve as a suggestion of was illustrated with Fig. 4). Thus, a weakness of bound-

Table 8. Boundary-line regression results for the three study fields.

Scatter-plot data Field Year N in boundary line Regression type r2 or R2

ECa-dp†and yield Colorado 1997 158 Inverse 0.50
1998 158 Inverse cubic 0.34
1999 158 Inverse cubic 0.50

Kansas 1997 85 Quadratic 0.73
1998 85 Quadratic 0.57
1999 85 Linear 0.90

Missouri 1997 46 Linear 0.83
1998 46 Linear 0.83
1999 46 Linear 0.63

Elevation and yield Kansas 1999 85 Running average† –
Missouri 1997 46 Cubic 0.88

1999 46 Cubic 0.69

† ECa-dp, deep (100 cm) apparent soil electrical conductivity.
‡ A running average (window of five points) was used for boundary line since regression models tested did not fit the boundary data well.
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